

Post-tensioning Damper System for Micro-vibration Reduction in Houses

Takewaki-Tsuji Lab.

Outline of research

Habitability

Traffic and wind vibration

Safety

Earthquake and wind

New vibration control system

Theoretical investigation and experimental test

Kyoto University Global COE "Human Security Engineering"

Asian Cities

Background and purpose of research

- Need of micro-vibration reduction in houses
- Proposal of low-cost and handy system
- Clarification of control mechanism
- Proposal of simple analysis model
- Experimental investigation (1/3 scale)
- Use of High-hardness rubber damper
 Sufficient damping even in small deformation range (shear strain of 0.5%)

Proposed vibration-control system

- Sufficient damping of high-hardness rubber damper even in small deformation range
- Avoidance of mechanical looseness via posttensioning brace

- High effectiveness
- Stable deformation

Clarification of damper mechanism

Principal parameters

- Member stiffness (brace and rubber damper)
- Eccentricity of brace
- Brace angle
- Post-tensioning force

Effective deformation ratio

Simulation result

1/3-scale experiment

9

- Brace angle=60°
- Brace eccentricity=0, 30, 100mm
- Brace diameter= ϕ 6
- Post-tensioning is determined so that compressive-side brace does not enter compressive region and tensile-side brace does not yield

Kyoto University Global COE "Human Security Engineering"

Test specimen

Initial state

Frame displacement 3mm

-±0mm(圧縮)

-+30mm(圧縮)

±0mm(引張)

Simulation result

Experimental result

Future issues

- Proposal of design method including proposed vibration control system
- Dual resistance for small and large amplitudes
 Series solution
- Tensegrity solution of post-tensioning force